Python解决高等数学问题

Python 专栏收录该内容
65 篇文章 5 订阅

使用Python中的Sympy库解决高等数学中极限、导数、偏导数、定积分、不定积分、双重积分等问题

在这里插入图片描述


Sympy是一个Python的科学计算库,它旨在成为功能齐全的计算机代数系统。 SymPy 包括从基本符号算术到微积分,代数,离散数学和量子物理学的功能。 它可以在 LaTeX 中显示结果。

Sympy官网


在这里插入图片描述

看到这图,是不是感觉快喘不过气了呢。Python来帮你解决。

from sympy import *
import sympy

输入“x= symbols(“x”)”命令定义一个符号

x = Symbol("x")
y = Symbol("y")

1. 实用技巧

1.1 符号函数

sympy提供了很多数学符号,总结如下

  • 虚数单位
sympy.I
  • 自然对数
sympy.E 
  • 无穷大
sympy.oo
  • 圆周率
 sympy.pi
  • 求n次方根
 sympy.root(8,3)
  • 取对数
sympy.log(1024,2)
  • 求阶乘
sympy.factorial(4)
  • 三角函数
sympy.sin(sympy.pi)
sympy.tan(sympy.pi/4)
sympy.cos(sympy.pi/2)

1.2 展开表达式expand

f = (1+x)**3
expand(f)

x 3 + 3 x 2 + 3 x + 1 \displaystyle x^{3} + 3 x^{2} + 3 x + 1 x3+3x2+3x+1

1.3 泰勒展开公式series

ln(1+x).series(x,0,4)

x − x 2 2 + x 3 3 + O ( x 4 ) \displaystyle x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + O\left(x^{4}\right) x2x2+3x3+O(x4)

sin(x).series(x,0,8)

x − x 3 6 + x 5 120 − x 7 5040 + O ( x 8 ) \displaystyle x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{x^{7}}{5040} + O\left(x^{8}\right) x6x3+120x55040x7+O(x8)

cos(x).series(x,0,9)

1 − x 2 2 + x 4 24 − x 6 720 + x 8 40320 + O ( x 9 ) \displaystyle 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} - \frac{x^{6}}{720} + \frac{x^{8}}{40320} + O\left(x^{9}\right) 12x2+24x4720x6+40320x8+O(x9)

(1/(1+x)).series(x,0,5)

1 − x + x 2 − x 3 + x 4 + O ( x 5 ) \displaystyle 1 - x + x^{2} - x^{3} + x^{4} + O\left(x^{5}\right) 1x+x2x3+x4+O(x5)

tan(x).series(x,0,4)

x + x 3 3 + O ( x 4 ) \displaystyle x + \frac{x^{3}}{3} + O\left(x^{4}\right) x+3x3+O(x4)

(1/(1-x)).series(x,0,4)

1 + x + x 2 + x 3 + O ( x 4 ) \displaystyle 1 + x + x^{2} + x^{3} + O\left(x^{4}\right) 1+x+x2+x3+O(x4)

(1/(1+x)).series(x,0,4)

1 − x + x 2 − x 3 + O ( x 4 ) \displaystyle 1 - x + x^{2} - x^{3} + O\left(x^{4}\right) 1x+x2x3+O(x4)

1.4 符号展开

a = Symbol("a")
b = Symbol("b")
#simplify( )普通的化简
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
#trigsimp( )三角化简
trigsimp(sin(x)/cos(x))
#powsimp( )指数化简
powsimp(x**a*x**b)

x a + b \displaystyle x^{a + b} xa+b

2. 求极限limit

limit(sin(x)/x,x,0)

1 \displaystyle 1 1

f2=(1+x)**(1/x)
f2

( x + 1 ) 1 x \displaystyle \left(x + 1\right)^{\frac{1}{x}} (x+1)x1

重要极限

f1=sin(x)/x
f2=(1+x)**(1/x)
f3=(1+1/x)**x
lim1=limit(f1,x,0)
lim2=limit(f2,x,0)
lim3=limit(f3,x,oo)
print(lim1,lim2,lim3)
1 E E

dir可以表示极限的趋近方向

f4 = (1+exp(1/x))
f4

e 1 x + 1 \displaystyle e^{\frac{1}{x}} + 1 ex1+1

lim4 = limit(f4,x,0,dir="-")
lim4

1 \displaystyle 1 1

lim5 = limit(f4,x,0,dir="+")
lim5

∞ \displaystyle \infty

3. 求导diff

diff(函数,自变量,求导次数)

3.1 一元函数

求导问题

diff(sin(2*x),x)

2 cos ⁡ ( 2 x ) \displaystyle 2 \cos{\left(2 x \right)} 2cos(2x)

diff(ln(x),x)

1 x \displaystyle \frac{1}{x} x1

3.2 多元函数

求偏导问题
例如求解该函数对x的偏导和对y的偏导

( x 1 + x 2 + 6 ) 2 + ( − x 1 x 2 − 3 x 1 − 3 x 2 + 2 ) 2 \displaystyle \left(x_{1} + x_{2} + 6\right)^{2} + \left(- x_{1} x_{2} - 3 x_{1} - 3 x_{2} + 2\right)^{2} (x1+x2+6)2+(x1x23x13x2+2)2

f关于x的偏导数,y是常量

f = (6+x1+x2)*(6+x1+x2)+(2-3*x1-3*x2-x1*x2)*(2-3*x1-3*x2-x1*x2)
fx = diff(f,x1)

2 x 1 + 2 x 2 + ( − 2 x 2 − 6 ) ( − x 1 x 2 − 3 x 1 − 3 x 2 + 2 ) + 12 \displaystyle 2 x_{1} + 2 x_{2} + \left(- 2 x_{2} - 6\right) \left(- x_{1} x_{2} - 3 x_{1} - 3 x_{2} + 2\right) + 12 2x1+2x2+(2x26)(x1x23x13x2+2)+12

如果需要求特定点的值,我们可以通过subs()方法来填入

fx.subs({x1: -4, x2: 6})

− 344 \displaystyle -344 344

4. 积分integrate

4.1 定积分

  • 函数的定积分: integrate(函数,(变量,下限,上限))
  • 函数的不定积分: integrate(函数,变量)
f = x**2 + 1
integrate(f,(x,-1.1))

− 1.54366666666667 \displaystyle -1.54366666666667 1.54366666666667

integrate(exp(x),(x,-oo,0))

1 \displaystyle 1 1

4.2 不定积分

f = 1/(1+x*x)
integrate(f,x)

atan ⁡ ( x ) \displaystyle \operatorname{atan}{\left(x \right)} atan(x)

举例:

from sympy import *
x = Symbol('x'); t = Symbol('t')    # 定义两个变量
lmt = limit(
    (integrate(t*cos(t),(t,0,x))-1+cos(x)) / (sqrt(x*tan(x)+1)-sqrt(x*sin(x)+1)), 
    x,
    0)
print(lmt)  # -1/3
-1/3

4.3 双重积分

f = (4/3)*x + 2*y
integrate(f,(x,0,1),(y,-3,4))

11.6666666666667 \displaystyle 11.6666666666667 11.6666666666667

5. 求解方程组solve

#解方程组
#定义变量
f1=x+y-3
f2=x-y+5
solve([f1,f2],[x,y])

{x: -1, y: 4}

6. 计算求和式summation

计算求和式可以使用sympy.summation函数,其函数原型为sympy.summation(f, *symbols, **kwargs)

加粗样式
**

sympy.summation(2 * n,(n,1,100))

10100

到这里就结束了,如果对你有帮助,欢迎点赞关注评论,你的点赞对我很重要。在此也祝愿大家可以把数学学好


参考:

https://docs.sympy.org/latest/index.html

在这里插入图片描述

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值